results publications & models

Selected publications

Dynamic causal modelling in probabilistic programming languages
Nina Baldy, Marmaduke Woodman, Viktor K. Jirsa, Meysam Hashemi
Journal of the Royal Society Interface / DOI: 10.1098/rsif.2024.0880
Virtual Brain Inference (VBI): A flexible and integrative toolkit for efficient probabilistic inference on virtual brain models
Abolfazl Ziaeemehr, Marmaduke Woodman, Lia Domide, Spase Petkoski, Viktor Jirsa, Meysam Hashemi
eLife / DOI: 10.7554/eLife.106194.1
The virtual multiple sclerosis patient
Sorrentino P, Pathak A, Ziaeemehr A, Lopez ET, Cipriano L, Romano A, Sparaco M, Quarantelli M, Banerjee A, Sorrentino G, Jirsa V.
iScience / DOI: 10.1016/j.isci.2024.110101

Open Source models

The virtual multiple sclerosis patient

This repository contains the code and data accompanying the paper "The Virtual Multiple Sclerosis Patient"

Inference on macroscopic dynamic of spiking neurons

This is a repo to make inference on a mean-filed model of spiking QIF neurons, using Optimization (DE/PSO), Simulation-based Inference (SBI), Hamiltonian Monte Carlo (HMC), and Neural ODEs.

Simulation-based inference on virtual brain models of disorders

This repository contains the code for Bayesian estimation of generative parameters in virtual brain disorders using deep neural density estimators

Dynamic Causal Modeling in Probabilistic Programming Languages

This repository provides automatic Dynamical Causal Modeling of Event-Related Potentials, using the SATO Probabilistic Programming Languages.

Virtual Brain Inference (VBI)

This open source toolkit provides fast simulations, taxonomy of feature extraction, and probabilistic ML algorithms, for the state-of-the-art whole-brain network models.